

Introduction of Pediatric Physiological and Anatomical Triage Score in Mass-Casualty Incident

Chiaki Toida, MD, PhD

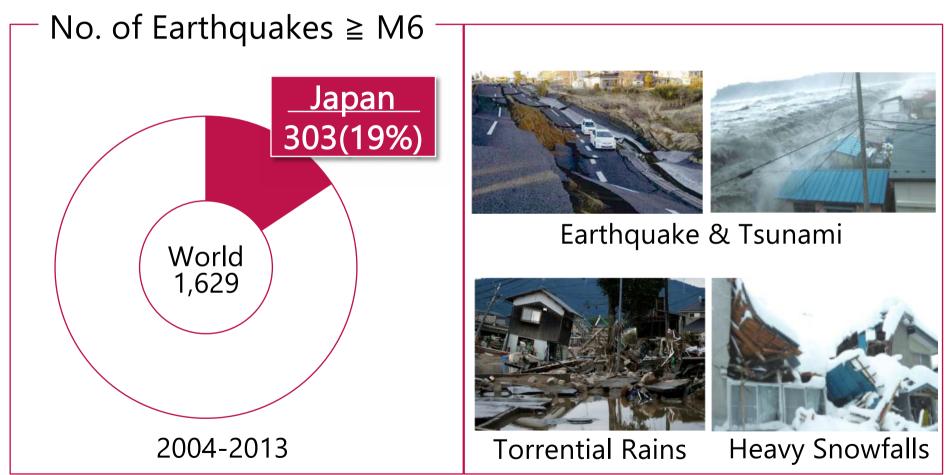
Vice-Chair of Department of Disaster Medical Management The University of Tokyo

Overview

- Disasters in Japan
- Disaster Management for Children
- Triage
- Newly Developed Secondary Triage Method
- Future Prospects

Disasters in Japan

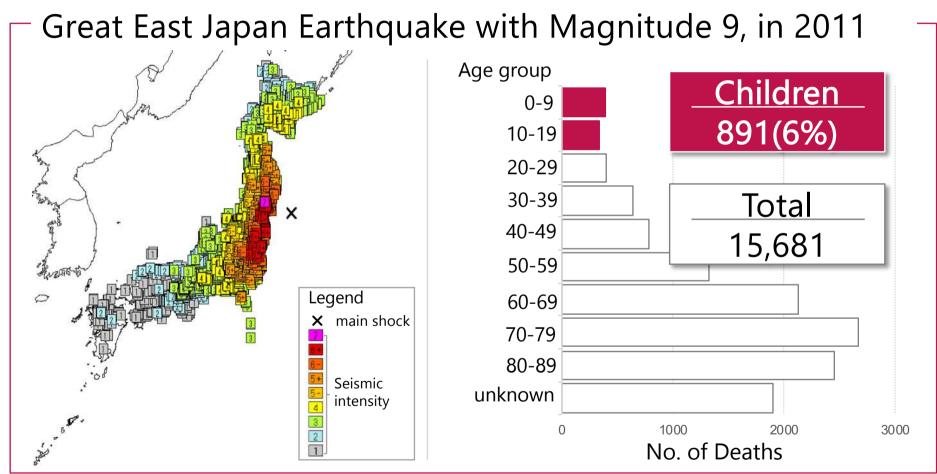
- Disaster-prone Country
 - Overview of disaster in Japan since 1995


Date	Disaster	No. of Deaths & Missing
1995	Great Hanshin-Awaji Earthquake (M7.3)	6,437
1995	Sarin Attack on Tokyo's Subways	12 died & 5,000 injured
2011	Great East Japan Earthquakes (M9.0)	23,769
2011	Typhoon 12	133
2011-13	Heavy Snowfalls	237
2014	Eruption of Mount Ontake	68
2018	Torrential Rain in West Japan	236

Source: The Japanese Government. White Paper on Disaster Management 2011

Disasters in Japan

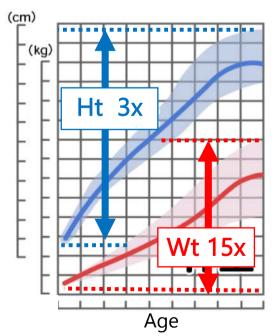
Natural Disaster-prone Country



Source: The Japanese Government. White Paper on Disaster Management 2011

Disasters in Japan

• Natural Disasters have caused a great loss of lives


Source: The Japanese Government. White Paper on Disaster Management 2011

Disaster Management for Children

Plan for the needs of children is important in disaster

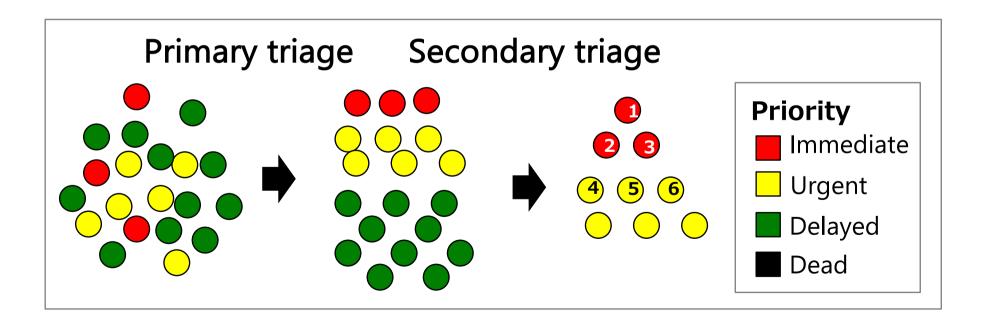
- 10-30% of casualties in major incident are children
- Children have higher mortality in disasters
- Children have various considerations and needs
 - Age-related differences:
 - Physiological variables
 - Anatomical variables

Triage

Medical Management and Support at disaster setting

- Imbalance between casualties and resources in disaster
- Triage is essential part of medical management

Aim: the right patient to the right place at the right time to receive the optimum treatmentTiming: casualties must be re-triaged repeatedlyPriority: Immediate, Urgent, Delayed, Dead


Triage

Primary triage - Sieve

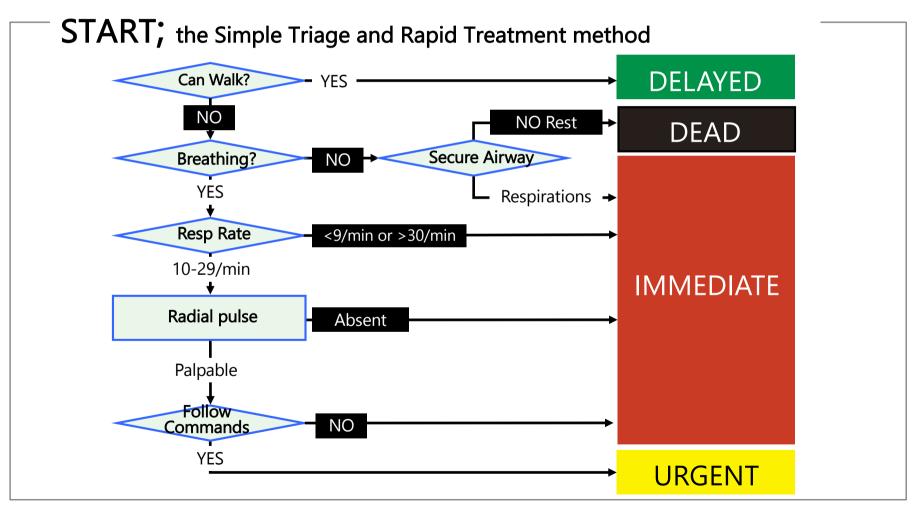
• A large number of triage decision must be made quickly

Secondary triage - Sort

• It has a great role in refining the results of primary triage

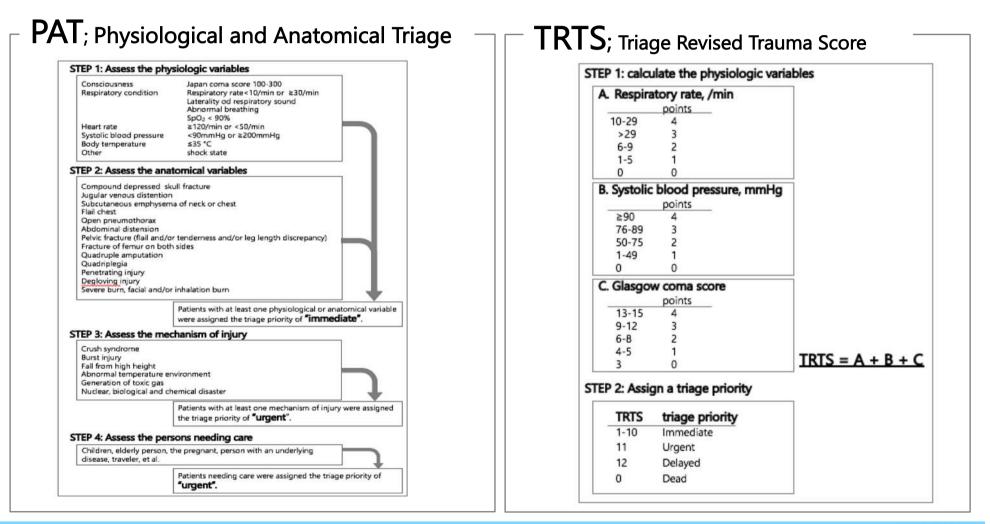
Several types of triage methods are used by each country

	Triage Methods	Used in Country
Primary Triage	START	Japan, U.S.A.
	Jump START	Japan, U.S.A.
	Care Flight	Australia
	Pediatric triage Tape	England
	Triage Sieve	England
	SALT system	U.S.A.
Secondary Triage	PAT	Japan
	TRTS	England, Japan
	SAVE	U.S.A.
	Triage Sort	England

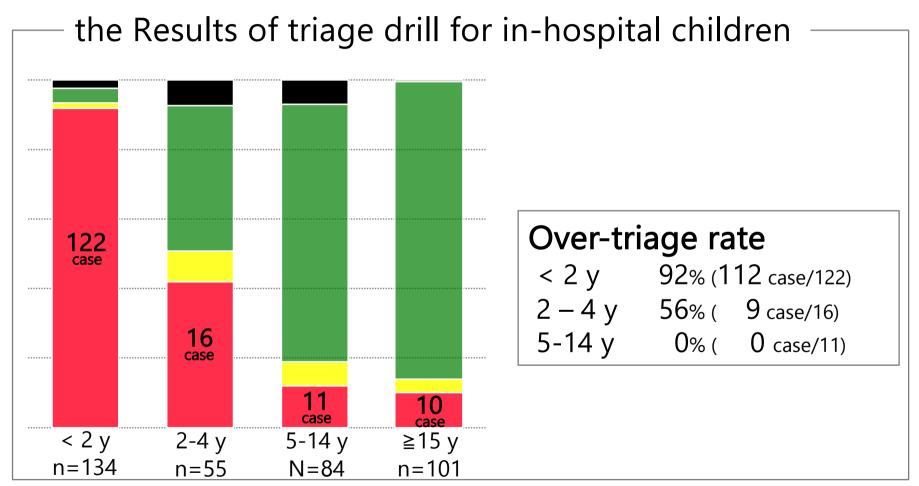

Garner A, at al. Ann Emerg Med 2001;38:541-8.

ALSG. Major incident medical management and support. BMJ Books. 2002/ Benson M, et al. Prehospital Disaster Med 1996;11:117-24.

Primary Triage


• **START method** is most frequently used in Japan

Secondary Triage


• PAT, TRTS method are most frequently used in Japan

Primary Triage for children

• START has higher over-triage rate among younger child

Source: C.Toida, et al. Disaster Med Public Health Prep. 2018 (in press)

Primary Triage for children

• High over-triage rate is caused by age-related differences

the Results of triage drill for in-hospital children

			%	(cases)
	< 2 y N=122	2 – 4 y N=16	5 – 14 y N=11	15+ y N=10
Over-triage of "IMMEDIATE"	92 (112)	56 (9)	0 (0)	0 (0)
Cannot walk	100 (122)	100 (16)	100 (11)	100 (10)
Respiratory rate >30 /min	69 (84)	6 (9)	45 (5)	10 (1)
Cannot follow commands	29 (35)	4 (7)	45 (5)	90 (9)

C.Toida, et al. Disaster Med Public Health Prep. 2018 (in press)

An Optimum Triage Method for Children?

• No triage method has been validated for children

- Accuracy of each triage methods for children

		Sensitivity(%)	Specificity(%)
Primary triage	START	31.3	77.9
	Jump START	3.2	97.8
	Care Flight Triage	48.4	98.9
	PTT*	37.8	98.6
Secondary triage	PAT	91.7	38.1
	TRTS	62.5	94.7
			*PTT; Pediatric Triage Ta

Garner A, at al. Ann Emerg Med 2001;38:541-8. Wallis LA, et al. Emerg Med J 2006;23:475-8.

Objectives

- To develop a new, advanced secondary triage method for children in a disaster setting
- To compare the accuracy of triage methods for identifying patients who require immediate treatment
- To evaluate the correlations between the score calculated by the newly developed secondary triage method and the severity and outcome of the patients

Methods

Study Design

A single-center, retrospective chart review study

Subjects

137 Patients admitted to Emergency Center from 2014-2016
Inclusion criteria
Patients < 16 years old
Patients stayed ED stay for > 3 hours
Patients transported directly from scene
Patients without missing data
Exclusion criteria
Patients experienced OHCA

ED; Emergency Department, OHCA; Out-of-Hospital Cardiac Arrest

Methods

- Development of PPATS
- Accuracy of PPATS
- Accuracy of PPATS was compared with PAT and TRTS for predicting the triage priority as "Immediate"
- ICU-patients were defined as the truly "immediate"
- Correlations between the PPATS and the Severity/Outcome
- Assess the predictive mortality rate, ventilation time, ICU length of stay, hospital length of stay

PPATS; Pediatric Physiological and Anatomical Triage Score

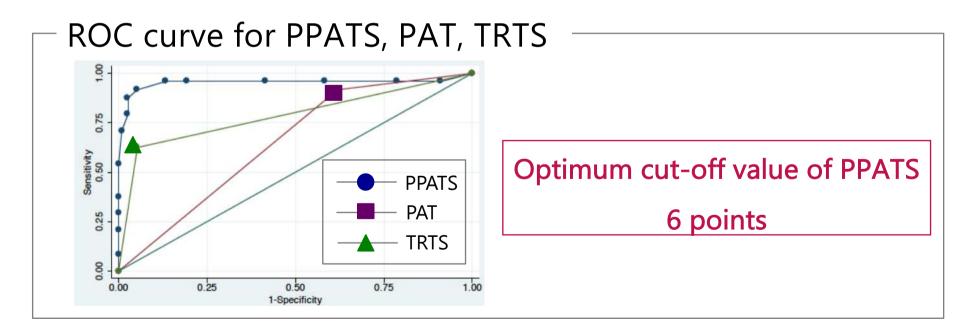
PPATS's criteria and scoring system

- PPATS was calculated based on 6 factors
- Total score was the sum of 6 factors range from 0 to 22)

Variable	0	+1	+2	+3	+4
Physiological variable					
Respiratory rate, percentile	25-75	10-24, 76-90	1-9, 91-99	<1, >99	-
Heart rate, percentile	25-75	10-24, 76-90	1-9, 91-99	<1, >99	-
Systolic BP, mmHg	-	-	-	-	Hypotension
Glasgow coma scale	15	13, 14	9-12	-	3-8
Anatomical abnormality	No	-	-	-	Yes
Need of life-saving intervention	No	-	-	-	Yes

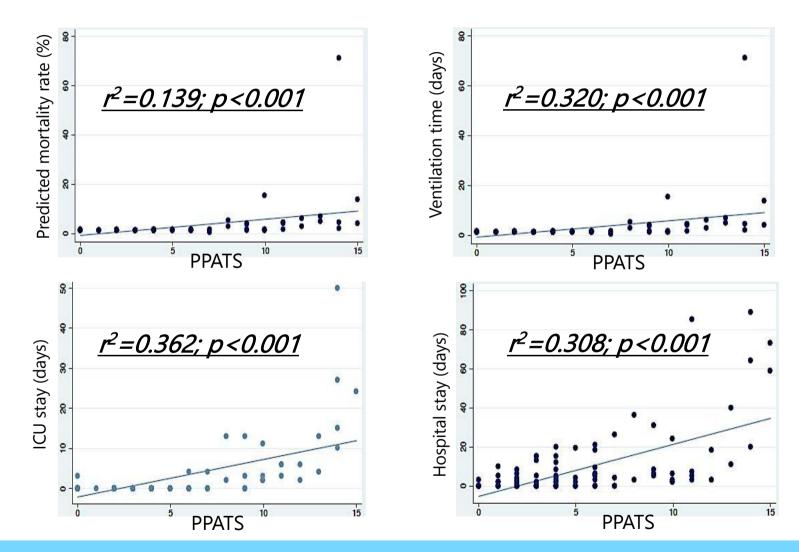
Results

Patients' Characteristics


	ICU admission (n=24)	Non-ICU admission (n=113)	P value
Male, n(%)	16 (67)	66 (58)	0.500
Age in month, (median, IQR)	135 (99-170)	32 (15-73)	<0.001
Respiratory rate, /min, (median, IQR)	24 (20-30)	30 (20-35)	0.322
O ₂ saturation, %, (median, IQR)	100 (99-100)	100 (98-100)	0.160
Heart rate, bpm, (median, IQR)	118 (97-133)	120 (98-140)	0.537
Systolic blood pressure, mmHg, (median, IQR)	128 (115-153)	110 (100-122)	<0.001
Glasgow coma scale, (median, IQR)	9 (6-13)	15 (15-15)	<0.001
Number of patients with anatomical abnormality, n(%)	4 (17)	1 (1)	0.003
Number of patients needing life-saving intervention, n(%)	22 (92)	14 (12)	<0.001
PPATS score, (median, IQR)	11 (9-13)	3 (2-4)	<0.001
Length of mechanical ventilation, days, (median, IQR)	3 (0-10)	0 (0-0)	<0.001
Length of ICU stay, days, (median, IQR)	5 (3-13)	-	-
Length of hospital stay, days, (median, IQR)	15 (4-38)	0 (0-2)	<0.001
Predicted mortality, %, (median, IQR)	3.9 (1.5-5.0)	1.1 (1.1-1.1)	<0.001
Mortality rate, n(%)	0 (0)	0 (0)	-

Results

Accuracy Values of PPATS, PAT, TRTS methods


	Sensitivity(%)	Specificity(%)	PPV(%)	NPV(%)	AUC	(95%CI)	P-value*
PPATS	95.8	86.7	60.5	99.0	0.95	(0.87-1.00)	-
PAT	91.7	38.1	23.9	95.6	0.65	(0.58-0.72)	<0.001
TRTS	62.5	94.7	71.4	92.2	0.79	(0.69-0.89)	0.003

Results

Correlations between PPATS and the Severity/Outcome

Summary

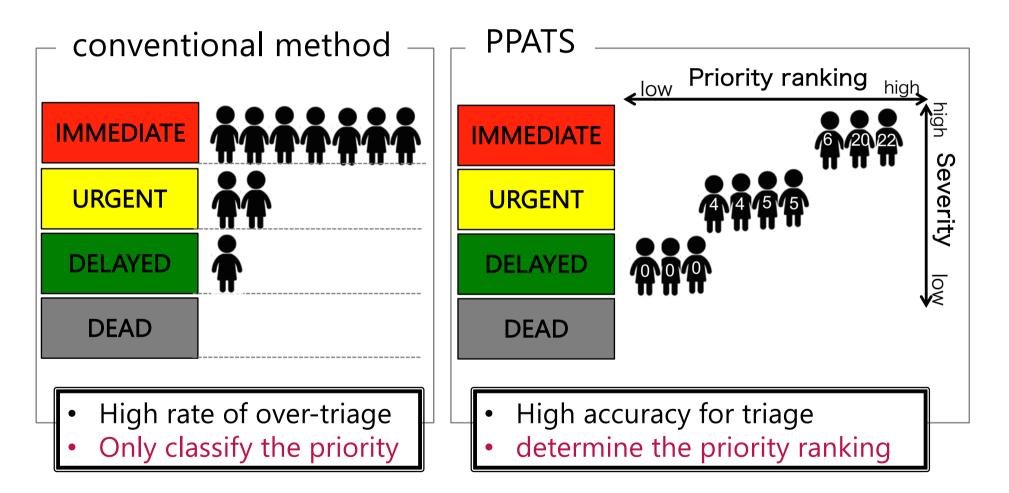
- The accuracy of PPATS, a newly developed secondary triage method for children, was superior to the conventional triage methods (PAT, TRTS).
- PPATS is useful for not only classifying high-priority patients, but also determining the priory ranking based on the PPATS score.

Advantage of PPATS

PPATS was accurate compared with PAT, TRTS

 over- and under-triaging at a disaster are said to result in increase in number of preventable disaster deaths.

Frykberg ER. J Trauma 2002;53:201-212


• PPATS was made by combining advantage of each method

Triage method	Criteria	Advantage
START	Physiological variables	Quick and Simple Assessment
РТТ	Physiological variables	Assessing based on age-related variation of children
PAT	Physiological and Anatomical variables Mechanism of injury, necessity for special care	Assessing based on several variables
TRTS	Physiological variables	Assessing based on scoring system

Advantage of PPATS

PPATS has Scoring system available for assessing the severity

Advantage of PPATS

PPATS uses Physiological and Anatomical measures

- It is the same as those commonly measured when patients are monitored in hospital at no-disaster setting.
- PPATS may be useful in that it serves both as a triage tool and as a clinically useful tool, like a disaster medical record for monitoring a patient's condition.

Limitation of PPATS

- Single center, retrospective study
- PPATS can classify only the "IMMEDIATE" priority.

Future Prospects

PPATS may be utilized as a criteria for wide area transportation.

- Large earthquake is predicted to occur in Japan
- When disaster with widespread damage occurs, people must evacuate to anywhere outside the damaged area.
- When we determine the priority of patients adapted for the wide-area transportation, unified objective criteria system in Japan is necessary.

Future Prospects

Developed App equips with a function to calculate PPATS score

- To eliminate complications in assessing physiological variables based on pediatric age-related factor
- To use as a medical record system by monitoring and reporting a patient's condition repeatedly.

Conclusions

- A pediatric physiology-based medical management plan for children is important component in disaster preparedness for major incidents.
- The new secondary disaster triage may be accurate and useful for pediatric triage, treatment, and transport.
- We would like to popularize the PPATS by improving the operation system.

Contact us:

Chiaki Toida, MD, PhD

Vice-Chair of Department of Disaster Medical Management The University of Tokyo

toidac-eme@h.u-tokyo.ac.jp

